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ABSTRACT: The formulation for a new homogenization theory is presented. The theory utilizes 
a higher-order, elasticity-based cell analysis of a periodic array of unit cells. The unit cell is 
discretized into subregions or subcells. The displacement field within each subcell is 
approximated by an (truncated) eigenfunction function expansion of up to fifth order. The 
governing equations are developed by satisfying the pointwise governing equations of 
geometrically linear continuum mechanics exactly up through the given order of the subcell 
displacement fields. The specified governing equations are valid for any type of constitutive 
model used to describe the behavior of the material in a subcell. The fifth order theory is 
subsequently reduced to a third order theory. The appropriate reduction of the fifth and third order 
theories to the first order theory (which corresponds to a variant of the original method of cells 
(MOC) (Aboudi, 1991) theory) is outlined. The 3D ECM theory correctly reduces to the 2D ECM 
theory microstructures and the exact 1D theory for bilaminated structures. Comparison of the 
predicted bulk and local responses with published results indicates that the theory accurately 
predicts both types of responses. Furthermore, it is shown that the higher order fields introduced 
coupling effects between the local fields that can result in substantial changes in the predicted 
bulk inelastic response of a composite. 
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INTRODUCTION 

A current trend in the application of advanced materials is a greater emphasis on understanding 
the fhdamental mechanisms governing the bulk response of the material. There is a multitude of 
reasons for this focus. As structural applications become more demanding, it is becoming 
increasingly important that the material microstructure be engineered in order to achieve specific 
response characteristics. Alternatively, in order to prevent catastrophic failure of a material 
during service, it is important that the mechanisms that drive the material failure be understood 
and, at least, predicted and, if possible, countered. 



Inherent in the above requirement is the need to address the fact that all materials have 
microstructure. The heterogeneous nature of material microstructures gives rise to complex 
interactions at the microstructural level, These interactions can drive critical local and bulk 
phenomena. Micromechanical theories represent a class of models especially well suited to the 
analysis of such effects in materials. By their very nature, these models provide predictions for 
the local behavior in different parts of a material's microstructure as well as providing estimates 
for the bulk response of a material system. These estimates are obtained by solving the 
appropriate governing equations of continuum mechanics subject to the constraints of the 
composite system's microstructural geometry and the response characteristics of the individual 
components composing a material system. Reviews of many existing micromechanics models 
are given by Aboudi [ I ] ,  Christensen [2], and Nemat-Nasser and Hori [3]. 

The method of cells (MOC) [ 11 and it's generalization, the generalized method of cells (GMC) [4] 
have proven to be particularly successful micromechanical theories for modeling both the elastic 
and inelastic behavior of composite materials. Several studies have shown that the MOC/GMC 
theories provide accurate estimates for the bulk response of composite systems [5,6]. A review of 
the work (both elastic and inelastic) conducted using the MOC/GMC theories has been given by 
Aboudi [7]. Despite the demonstrated ability of the MOC/GMC theories to model the bulk 
response of composites, a major issue in the use of the these models is the lack of coupling 
between the local shearing and normal effects as well as between local shearing effects of 
different types. This lack has implications for the history-dependent analysis of composite 
materials. In particular, this lack can result in incorrect evolution of local history-dependent 
phenomena and, hence, of the bulk history-dependent behavior of the composite. 

The purpose of the present paper is to present the development of a new type of higher-order, 
elasticity-based theory (denoted as ECM for elasticity-based, cell model) for homogenization 
analyses that rectifies the issue of the lack of coupling between the local fields. The proposed 
theory is based on the assumption of periodic arrays of inclusions (either doubly or triply periodic 
arrays). The resulting unit cells are discretized into subcells in a manner similar to that used by 
the original MOC. The displacement field within each subcell is approximated by a (truncated) 
eigenfunction expansion of up to fifth order. The strong form of the point wise governing 
equations of geometrically linear continuum mechanics are satisfied exactly up through an order 
consistent with the order of the subcell displacement fields. In particular, the formulation 
satisfies the equations of equilibrium within the subcells and the traction and displacement 
continuity constraints both between subcells and between unit cells. The theory is formulated 
independently of the material constitutive relations for the individual phases and, thus, can any 
type of (geometrically linear strain) constitutive theory. It is shown that the theory accurately 
predicts the bulk elastic properties for continuous fiber and particulate composites. Additionally, 
the application of the current theory to inelastic deformation problems is considered. 

THEORETICAL FRAMEWORK 

This section outlines the development of the framework for the three-dimensional, 5' 
(cumulative) order version of the elasticity-based, cell model (ECM). The following conventions 



are used throughout the formulation. Summation is implied on Arabic subscripts and 
superscripts. An overbar denotes a mean (volume averaged) field where for a generic field F 
this mean field is given by F = -1FdV where V is the volume of the unit cell. 

1 

V 

Consider a triply periodic array of inclusions embedded in a matrix, Fig. 1 .  The composite 
system is subjected to a homogeneous displacement field U, = E", where the EU are the bulk 
(average) strains in the composite and the x, are the macroscopic coordinates in the composite, 
Implied by this type of material microstructure and global loading state is the fact that it  is 
sufficient to analyze only a single repeating unit cell (Fig. 1). This unit cell is subdivided into 
eight subregions or subcells. The superscript (@y) is used to denote the subcell within the unit 
cell where a, p, and y range from 1 to 2 individually. A local coordinate system X i  is defined at 
the center of each subcell. 
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Figure 1: The triply periodic array of inclusions and the corresponding discretized unit cell 
employed in the current analysis, 

The assumed subcell displacement field is 

where 



and the p ,  6,) are dimensional Legcndre polynomials of order m in the local subcell coordinate 

X I ,  m takes the values I ,  3 or 5 ,  and the cumulative order m + n + r must also be 1, 3, or 5 .  

The V,l$; are the material microstructure induced fluctuating displacement field effects about 

the applied homogeneous displacement field. There are 102 unknown V,'(zI per subcell or 816 
unknowns per unit cell. The even (cumulative) order displacement terms are not considered since 
they decouple from the odd (cumulative) order and hence are identically zero. Based on the 
geometrically linear definition of strain the subcell strains take the following functional form 

- 

where p, q, s take the values 0, 2, or 4 individually and the cumulative order p + q + s must 
take the values 0,2, or 4. The piz.:) represent the fluctuating strain effects. The corresponding 
subcell stress field is 

Any set of desired constitutive relations can be used to relate the strain field to the stress field. 

The governing equations for the theory are obtained by satisfying the strong form of the 
displacement and traction continuity conditions across each interface 

[u,] = 0 

(where [F] denotes the jump in field F across the interface) as well as the point wise 
equilibrium equations within each subcell 

where ai denotes partial differentiation with respect to the xi coordinate. Due to periodicity and 
the particular forms for the local fields the continuity conditions simultaneously satisfy the 
continuity conditions both within and between unit cells. 

Substituting the local fields for the displacements and stresses in the subcells into the above 
governing equations for continuum mechanics and using the orthogonality properties of the 



expansion functions p,,, 6,) provides the governing equations for the theory. The resulting 
system of governing equations is appropriate for any particular set of constitutive models for the 
material behavior, To obtain the final form for the governing equations it is necessary to assume 
a particular set of constitutive relations for the materials occupying the subcells. For this work 
the following form for the constitutive relations for the materials composing each subcell are 
assumed 

where C is the stiffness tensor, E is the total strain, and e represents the eignestrain effects. 
The evolution law for the eigenstrains (in this case inelastic strains) is given by 

where 2 is the proportionality factor, and s is the stress deviations. The proportionality factor 
2 is calculated using either classical incremental plasticity theory (Williams and Pindera [IO]) or 
the Bodner-Partom (BP) unified viscoplastic theory [ I  I]. Substituting this form for the 
constitutive relations into the governing equations allows these governing equations to be written 
in the following matrix form 

K V  = FE+ he 
e - -  

where 'K , F , and h are coefficient matrices that are known functions of the material properties 
and the microstructural geometry and is a vector composed of the eigenstrain effects within the 
subcells. The details of the governing equations are given by Williams [8,9]. The third order 
theory is obtained by eliminating all 5'h (cumulative) order terms in the displacement expansion 
and all 4'h (cumulative) order terms in the strain and stress expansions as well as the associated 
governing equations. The reduction to the 1'' order theory follows a similar process. To reduce 
the 3D theory to the 2D theory the spatial dependencies with respect to one direction are 
eliminated from the analysis. The details of these reductions to lower order theories are given in 
detail by Williams [8,9]. 

r r s  = 

RESULTS 

A necessary condition for the validation of the model is that it correctly reduces to the lower 
order theories (Le. 1 '' and 3rd order theories) as well as the lower order dimensionalities. The 5* 
order model presented above does correctly reduce to both the analyses based on lower order 
expansions for the fields as well as the 2D and 1D cases. It is noted that the 1D result represents 
an exact solution for a bilaminate (Aboudi [ 1 I). For conciseness, these results are not presented. 

First, the theory's ability to predict the effective elastic moduli is considered. The predictions 
from the 3' order ECM, the MOC model, and various finite element analyses [6,12] for the 
effective transverse shear modulus of a GrEp composite are given, Fig. 2. The elastic properties 



for the (Modmor 11) Gr fiber are E ~ 2 3 2 . 0  GPa, E,=15.0 GPa, v,,=0.49, vl,=0.279, G ~ 5 . 0 3  GPa, 
and G,,=24.0 GPa and the corresponding properties for the LY558 epoxy arc E=5.35 GPa, 
~ 0 . 3 5 4 ,  G=1.976 GPa [6]. The extreme contrast in the material properties represents a stringent 
test of a micromechanical theory's ability to correctly predict the effective properties of a 
composite. The ECM predictions are in excellent agreement with the finite element predictions 
based on a square array of fibers (61 and are more accurate than the MOC predictions. 
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Figure 2: Predictions for the effective transverse shear modulus of a Gr/Ep continuous fiber 
composite obtained from different finite element analysis, the 3rd order ECM theory, and 

the MOC model. 

It is noted that the present theory is also able to correctly predict the local fields in a 2D 
composite (not shown) [8,9]. 

Next, the predictions for E22, E33, ~ 3 2 ,  and G23 as a function of inclusion volume fraction obtained 
from the 5'h and 3d order ECM are compared to predictions obtained from the MOC model and 
the results generated by Banks-Sills et. al. [ 131 for a particulate composite system composed of a 
rectangular parallelepiped A1203 inclusion (Young's modulus of 350 GPa and a Poisson's ratio of 
0.30) embedded in an aluminum matrix (Young's modulus of 70 GPa and a Poisson's ratio of 
0.30) is presented, Fig. 3-7. The results of Banks-Sills et. ul. [13] are derived by using the 
asymptotic homogenization theory (Bensoussan et. al. [ 141) in conjunction with highly detailed 
finite element simulations of the unit cell. In the following discussion, this approach is referred to 
as the HFE method. As can be seen both the 5~ and 3rd order ECM provide high fidelity 
predictions of the bulk response of this particulate composite system with the 5* order theory 
providing the more accurate predictions. The MOC model provides the least accurate predictions 



for the effective behavior. The improvement in the predictions for the effective G2.l from the 
ECM as compared to those obtained from the MOC theory are particularly noteworthy. The high 
degree of agreement between the current theory results and HFE results as compared to the 
correlation between the MOC and HFE results is due to the correct incorporation of the coupling 
effects between the local fields in the ECM. Furthermore, it is noted that the ECM employs 
substantially fewer unknowns in the analysis than does the HFE method and, hence, the ECM is 
more computational efficient. 
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Figures 3-6: The predictions for the effective Ezz, E3k ~ 3 2 ,  and G23 as function of inclusion 
volume fraction for an Al2O3/Al composite with rectangular parallelepiped inclusions. 

Now the inelastic response of an Al2O3/Al composite with cubic inclusions with a volume 
fraction of 0.3 is considered. The elastic properties of the phases used in the analyses are those 



for the effective behavior. The improvement in the predictions for the effective G23 from the 
ECM as compared to those obtained from the MOC theory are particularly noteworthy. The high 
degree of agreement between the current theory results and HFE results as compared to the 
correlation between the MOC and HFE results is due to the correct incorporation of the coupling 
effects between the local fields in the ECM. Furthermore, it is noted that the ECM employs 
substantially fewer unknowns in the analysis than does the HFE method and, hence, the ECM is 
more computational efficient. 
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Figures 3-6: The predictions for the effective Ezz, E33, V32, and G23 as function of inclusion 
volume fraction for an A1203/Al composite with rectangular parallelepiped inclusions. 

Now the inelastic response of an A1203/Al composite with cubic inclusions with a volume 
fraction of 0.3 is considered. The elastic properties of the phases used in the analyses are those 
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Figure 8: Predicted bulk shear response of an AI203/AI particulate composite with cubic 
inclusions. 

Most of the trends observed in the normal macroscopic stress-strain responses are also present in 
the bulk shear response of the composite. In particular, the MOC results exhibit the abrupt 
transition from the elastic to the inelastic behavior previously observed with the subsequent 
inelastic behavior rapidly saturating. The transition from the elastic to the inelastic responses 
predicted by the ECM is substantially more gradual than the corresponding MOC regime. This 
slower evolution of the bulk inelastic response results in substantially increased macroscopic 
stresses in the ECM response as compared to the MOC response. The explanations for these 
differences again resides in the fact that the MOC model yields entire regions within the 
microstructure simultaneously while the ECM predicts that yielding occurs in a point wise 
fashion. Consideration of the microfields predicted by the ECM shows that at for strains where 
the MOC model exhibits saturated inelastic behavior the local ECM fields still exhibit regions of 
completely elastic deformations, i.e. regions where yielding has not occurred. Additionally, the 
local plastic strain fields in the subcells exhibit extreme localization effects. 

SUMMARY 

The development of a new homogenization theory for 2D and 3D composite materials has been 
presented. The theory is based on a displacement based elasticity analysis of a repeating unit cell. 
The displacement field within each subcell has been expressed in terms of a 5'h (cumulative) 
order eigenfimction expansion. The analysis satisfies the strong (point wise) form of the 
governing equations of geometrically linear continuum mechanics. The resulting formulation 
correctly introduces coupling between the local fields (both normal and shearing) within the 
subcells. The theory is formulated based on arbitrary material behavior within the subcells and 
hence any desired set of constitutive theories for the behavior of the materials in the subcells can 
be implemented. 



The theory has been shown to accurately predict the bulk behavior of both continuous fiber and 
particulate composite systems. Additionally, it  has been shown that the incorporation of coupling 
between the local normal and shearing effects within the subcells can substantially influence the 
predicted bulk inelastic response of a composite as compared to analyses where the local fields 
are not coupled, In particular, the evolution of the predicted bulk inelastic response is more 
gradual in the ECM than in the MOC. Due to this delayed evolution of the bulk inelastic 
deformations, the ECM predicts substantially different macroscopic stress states in the inelastic 
regime than does with the MOC model. 
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